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Abstract

Nineteen months of temperature and salinity data were recovered from North Brazil Current
(NBC) Rings Experiment Mooring S1. The mooring, located east of Barbados at 13° 00°N,
57° 53°W between November 1998 and June 2000, consisted of a vertical array of five
temperature/conductivity recorders, five temperature recorders, one 150 kHz acoustic Doppler
current profiler (ADCP), and one 260 Hz RAFOS sound source. This instrumentation was
distributed over a depth interval (500-1100m) coincident with the low-salinity core of
Antarctic Intermediate Water. Due to low concentration of scattering particles at 1000 m, the
ADCP failed to return useful velocity data. Heading, pitch, and roll data were successfully
recorded, however, and provide coarse measurement of current intensity. Four anomalously
Jow temperature, low salinity, and (inferred) high-velocity events appear toward the end of the
record. The temperature and salinity fluctuations observed during these events are most likely
due to a combination of vertical instrument excursions due to current-induced mooring tilt and
advection of anomalous NBC ring-core water past the mooring site. Anomalous conditions
persist for a period of 2-3 weeks and appear, based on simultaneous surface drifter trajectories
and satellite ocean color observations, to be associated with the passage of NBC Rings near
Barbados.




Front Cover Figure Caption: Cartoon of the significant upper-ocean circulation features in
the western tropical Atlantic and the location of North Brazil Current Rings Experiment
Mooring S1.
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1. Introduction and Motivation

North Brazil Current (NBC) rings are large (400 km diameter) anticyclones that pinch off
from the NBC retroflection in the western tropical Atlantic near 8°N and translate
northwestward along the coast of South America toward the Caribbean (Johns et al., 1990;
Didden and Schott, 1993; Richardson et al., 1994; Fratantoni et al., 1995; Fratantoni and
Glickson, submitted). NBC rings have been proposed as one of several important
mechanisms for the transport of South Atlantic upper-ocean water across the equatorial-
tropical gyre boundary and into the North Atlantic subtropical gyre. Such transport is
required to complete the meridional overturning cell (MOC) in the Atlantic forced by the
high-latitude production and southward export of North Atlantic Deep Water. While recent
observational and numerical studies have advanced our knowledge of the MOC, considerable
uncertainty remains regarding the vertical partitioning of the compensating northward MOC
transport into surface, thermocline, and intermediate water classes.

As part of an NSF-sponsored field program designed to further our understanding of NBC
ring generation and evolution and to quantify the role of NBC rings in cross-equatorial and
cross-gyre transport within the Atlantic MOC, 26 acoustically-tracked subsurface RAFOS
floats were deployed in NBC rings. The main purpose of the S1 mooring was as a platform
for one of two 260 Hz acoustic sound sources required for tracking the RAFOS floats. The
decision to locate the S1 mooring on the slope just east of Barbados (water depth 3605 m;
Figure 1) was motivated primarily by the requirements of the acoustic tracking array.
However, this site was also identified as a useful observing point for the measurement of
northward transport of intermediate water, either as a boundary current or in the form of
episodic pulses associated with the subsurface circulation of NBC rings. It was hypothesized
that the cross-isobath flow of water at intermediate (400-1000 m) and greater depths would be
inhibited as NBC rings approached the shoaling topography of the Lesser Antilles, and that
such water would necessarily be diverted northward east of Barbados rather than westward
into the Caribbean Sea. To test this hypothesis, instrumentation to measure temperature,
salinity, and velocity was obtained and distributed vertically on the S1 mooring over a depth
interval (500-1100 m) coincident with the low-salinity core of Antarctic Intermediate Water
(AAIW).

2. Mooring Configuration and Data Recovery

Mooring S1 was deployed east of Barbados at 13° 00’ N, 57° 53 W on November 9, 1998
from the R/V Seward Johnson. The mooring consisted of a vertical array of five SeaBird
SeaCat SBE-19 temperature/conductivity recorders, five Brancker temperature recorders, one
RDI 150 kHz acoustic Doppler current profiler (ADCP), and one 260 Hz RAFOS sound
source (Figure 2; Table 1). All instruments were successfully recovered on June 20, 2000
from the R/V Seward Johnson.

Raw temperature, conductivity, and velocity observations were downloaded from each
instrument immediately upon recovery. The SeaCat CTDs recorded temperature and
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Figure 1. (a) Cartoon showing the location of NBC Rings Experiment Mooring S1 and significant
upper-ocean circulation features in the western tropical Atlantic. After pinching off from the NBC
retroflection, NBC rings follow trajectories that pass near or over the mooring site. (b) An expanded
view of Barbados and the mooring, shown with bathymetry.
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Figure 2. Configuration diagram for NBC Mooring S1,
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nominal depth (as discussed in the text). Modified from G.
Tupper, 1998.




Table 1. Statistics for each moored instrument.

Standard Number of
Depth Instrument S/N Minimum  Maximum Mean Deviation Records
472 SeaCat 0994 T 6.65 10.08 8.64 0.52 1181
S 34.67 35.21 34.90 0.08 1181
572 Brancker 4481 T 5.74 8.15 7.45 0.44 1181
672 SeaCat 1879 T 5.18 7.71 6.63 0.37 1181
S 34.53 34.89 34.69 0.05 1181
722 Brancker 4487 T 5.00 7.10 6.31 0.36 1181
772 SeaCat 2323 T 4.83 6.93 6.03 0.36 1181
S 34.51 34.83 34.67 0.05 1181
822 Brancker 4494 T 4.79 6.50 5.79 0.31 1181
872 SeaCat 0146 T 4.74 6.22 5.70 0.27 311
S 34.51 34.73 34.65 0.04 311
922 Brancker 3662 T -- -- -- -- --
972 ADCP T 4.50 5.76 5.16 0.14 960
U - - - - -
\Y - - - - -
1072 SeaCat 0144 T 4.83 5.75 5.33 0.14 1181
S 34.57 35.06 34.83 0.07 1181
1172 Brancker 3762 T 495 5.62 5.31 0.11 1181




conductivity at half hour intervals. Of the five instruments, four returned complete records.
The fifth (0146) recorded 156 days (5 months). The Brancker temperature recorders recorded
temperature once per hour. Four of these also returned complete records, while the fifth
(3662) recorded no data beyond the date of deployment. The ADCP measured velocity and
temperature every half hour. Although velocity records were recovered from the ADCP, it
was discovered during processing that they were of extremely poor quality. Following
consultation with technical representatives at RD Instruments it was determined that the data
were not suitable for analysis. At a depth of 1000 m the number of scattering particles in the
water appears to have been insufficient for the 150 kHz broadband ADCP to determine valid
velocities when used in the default water profiling mode (Mode 4). It was strongly suggested
by RD Instruments that profiling Mode 1 be used in future deployments of this type. The
ADCP temperature record was not affected by this problem. The ADCP batteries expired
about three months prior to recovery of the mooring resulting in a record length of 480 days.

3. Data Processing

The SeaCat CTDs and the Brancker temperature recorders were calibrated, by the
manufacturer and at the WHOI calibration facility, respectively, both before and after field
deployment. These pre- and post-deployment calibrations were in close agreement and no
trend removal was required.

Each time series of temperature and salinity was examined for obvious outliers and manually
edited to remove wild points (see below). All records were then aligned to begin at a
common time, filtered using a low-pass filter with a 40 hour cutoff frequency to remove high-
frequency inertial and tidal signals, and subsampled at 12 hour intervals (0000 and 1200
GMT). The complete filtered and unfiltered time series for temperature and salinity are
presented in Appendices A and B, respectively.

Data points removed during editing:

1. Removed 56 pts (28 hrs) of data from the 0672 m salinity record between April 6 and
April 8,2000. Evident from the unfiltered data that something temporarily fouled the
conductivity sensor. Linearly interpolated across the resulting gap.

2. Removed one point from the 1072 m salinity record, with a salinity of 52.03, on May
31,1999. Linearly interpolated across the resulting gap.

None of the instruments on the mooring were equipped with a pressure sensor. The
determination of instrument depth depends on knowledge of the mooring configuration, the
elastic deformation of the mooring wire under tension, and the local bottom depth. The first
two factors were determined with the WHOI mooring design program prior to deployment.
Bottom depth was estimated acoustically prior to deployment. Final determination of
instrument depths was accomplished by comparing instrument temperature and salinity
measurements with three CTD casts conducted as part of the NBC Rings Experiment and
located in the vicinity of the mooring site (Table 2). CTD potential density was calculated for




a vertical range encompassing the approximate instrument depths. Mooring and CTD
potential density values were compared, and the RMS difference between the two minimized
by adding uniform displacements to the vertical position of all moored instruments (Figure 3).
For two of the three CTD casts, the smallest difference between the instrument and CTD
occurred when the instrument depth was adjusted to be 7 m deeper than that inferred from the
mooring construction diagram and our estimate of the bottom depth. Based on this result the
assumed depth of all instruments was increased by 7 m. The remaining CTD cast also
suggested a deepening of the moored instruments, but by a larger amount. This cast (Nov 98,
Station 01) was performed immediately following mooring deployment. It is possible that the
mooring had not yet reached a stable, vertical position at the time this cast was performed.

A comparison of the final, depth-adjusted, record-length mean moored observations with
nearby CTD and lowered-ADCP (LADCP) observations is shown in Figure 4 as vertical
profiles and in Figure 5 as potential temperature (8) vs. salinity diagrams. The 1998 and 2000
velocity profiles differ significantly at intermediate depths and suggest that southward as well
as northward flow is possible east of Barbados. Southeastward flow at depths greater than
1000 m corresponds to the upper portion of the Deep Western Boundary Current.

Table 2. CTD Stations used in Depth Correction Calculations.
Station Latitude (N) Longitude (W) Date of Cast

CTD! 98-001 13 00.00 57 54.00 09-Nov-98
CTD2 99-003 13 00.10 58 00.04 07-Feb-99
CTD3 00-021 12 59.86 57 55.10 13-Feb-00

4. Statistics, Time series, and 6-S Distributions

The basic first-order statistics for each instrument time series are shown in Table 1.
Temperature and salinity variability is greatest near the top of the mooring and decreases with
depth. This is apparent in a time vs. depth depiction of temperature and salinity and their
anomalies relative to the record-length mean profile (Figure 6).

Figure 7 illustrates the distribution of temperature and salinity about the record-length mean
of each CTD time series. At several depths the distribution is bimodal, with infrequent
occurrences of anomalously cold, fresh water falling outside a two-standard-deviation
envelope on either side of the mean. Combined, these cold, fresh events make up less than
3% of the total record. Several such events are identifiable in the raw time series data
(Appendices A and B) and are enumerated in Table 3. There are two processes which might
be responsible for these occasional abrupt changes in properties: (1) Vertical excursion of
moored instruments due to current-induced mooring tilt, and (2) Advection of anomalous
water past the mooring site. Both processes could result from the passage of an NBC ring
near the mooring site, as has been observed with surface drifters (Glickson et al., 2000) and
satellite ocean color observations (Fratantoni and Glickson, submitted). We were able to
associate several of the fresh, cold events with the nearby passage of an NBC ring. A subset
of drifter trajectories in the vicinity of the mooring and a description of the detailed evolution
of the moored temperature and salinity records during these events are shown below in
Appendix C.
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Figure 3. (a) Plot of the RMS potential density difference v. depth difference between Mooring S1 and the
CTD casts. CTD stations 2 and 3 (99-003 and 00-021) showed the smallest RMS difference, indicative of
the best match, at 7 m deeper than the nominal instrument depth. (b-d) Individual plots of potential density
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Figure 4. Property plots for CTD/LADCP casts closest to the S1 mooring. The closest CTD casts from each
cruise (one each from 1998, 1999, and 2000) were used for calibration of the S1 mooring instruments (see Table
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For temperature (T) and salinity (S), the record length mean for each instrument is shown as an open circle.
Arrows indicate instruments with incomplete records. There is no LADCP data associated with CTD2.
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Figure 7. Histogram of salinity and temperature for all SeaCat CTD instruments. The filtered data at each
depth are presented as a percentage in order to remove any bias due to variable record length. Temperature is
binned at 0.2 °C intervals and salinity is binned at .02 intervals. The record length mean for each instrument is
shown as a dashed line, while the gray envelope encompasses data that fall within 2 standard deviations of the
mean. Note the bimodal distribution present at most depths.
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At the 772 m SeaCat the gap between “modes” is approximately 1.2°C in temperature,
corresponding to a required vertical excursion of approximately 450 m. This seems unlikely
as the mooring was designed to deflect less than 100 m in currents exceeding 100 cm/s such
as might be expected in an NBC ring. Hence we surmise that both horizontal advection of
anomalous properties and vertical mooring motion are responsible these cold, fresh events.
Without an independent measure of pressure or velocity it is not possible to cleanly separate
the contributions of these two processes.

Table 3. Chronology of Cold, Fresh Events.

Event Beginning Date Ending Date Looping Drifters SeaWiFS
1 30-May-99 12-Jun-99 no no
2 05-Jan-00 20-Jan-00 no no
3 20-Feb-00 07-Mar-00 yes yes
4 22-Mar-00 19-Apr-00 yes yes

Although the ADCP velocity record is contaminated beyond repair, the instrument’s attitude
measurements (heading, pitch, roll) provide a coarse estimate of the relative flow intensity at
the mooring site. Time series of these quantities are shown in Figure 8. We expect instrument
tilt to be related to the integrated drag over the portion of the mooring above the ADCP. The
pitch and roll records are relatively stable except for a few 2-3 week periods towards the end
of the record. The largest instrument tilts coincide with two of the cold, fresh events
described above and enumerated in Table 3. The ADCP measured an abrupt decrease in
temperature during the January 2000 event when instrument tilt exceeded 10 degrees from the
vertical. However, an even larger tilting event in late February 2000 resulted in no
appreciable temperature reduction at the ADCP.

The five SeaCat CTD records are displayed in the form of a composite 8-S diagram in Figure
9. The salinity minimum associated with the core layer of AATW is clearly defined near a
potential density of 27.3. The cluster of fresh, cold observations at the salinity minimum
results primarily from the four anomalous events described above.

5. Property Sections Adjacent to Mooring S1

To provide spatial context for the moored time series, zonal CTD/LADCEP sections adjacent to
Mooring S1 were occupied during NBC Rings Experiment survey cruises in February 1999
and February 2000. These sections are shown in Figure 10. The positions of the stations
used in creating these sections are shown in Figure 11. The LADCP did not provide useful
data during the February 1999 occupation of this section -- geostrophic velocity (relative to
1300 m) is substituted in Figure 10a.

Both sections reveal the AAIW salinity minimum near a depth of 800 m and large

displacements in the depth of the 6°C isotherm near the base of the main thermocline. Below
1000 m the increasing dissolved oxygen and salinity are indicative of upper North Atlantic
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Figure 8. ADCP attitude time series. Heading, roll, pitch and temperature records from the ADCP at 972 m are
presented. Heading, roll, and pitch are in degrees, and temperature is in °C. The grey shading represents anomalous
cold water events (see Appendix C). The largest pitch and roll values correspond to the cold, low salinity events and
suggest the temporary existence of a strong surface-intensified current.
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Figure 9. 6-S diagram for the five SeaCat CTD instruments (filtered and subsampled data).
Each depth is indicated by a different symbol, as shown in the legend. The colder, fresher data
points at all depths show the influence of Antarctic Intermediate Water near a potential density
of 26.3. The instrument at 872 m returned only a partial record.
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Figure 10a. Property sections adjacent to Mooring S1 for 1999. Sections for both (a) and (b) were started at a common
point (13°N, 59°W), and are presented at the same scale for comparative purposes. Temperature, salinity, potential
density, oxygen, and velocity data are shown. The 1999 section consists of four CTD stations (001 - 004). Uand V
velocities are not presented for 1999 because only one station (99-001) recovered valid LADCP data. Instead,
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Figure 10b. Property sections adjacent to Mooring S1 for 2000. Sections for both (a) and (b) were started at a common
point (13°N, 59°W), and are presented at the same scale for comparative purposes. Temperature, salinity, potential
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Figure 11. Location map for the (a) 1999 and (b) 2000 CTD/LADCP sections presented in Figure 10.
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Figure 12. Meridional transport histogram for the 2000 CTD/LADCP section. Velocities are binned at 100 m
depth intervals. Northward velocity is positive. Note the generally northward flow in the top 1000 m of the
section (2.1 Sv total) versus the strong southward flow that dominates between 1000 m and 2000 m (-7.7 Sv).




Deep Water. The February 2000 velocity section confirms an increase in southeastward
velocity (roughly parallel to the bathymetric contours; see Figure 11) below 1300 m.

Figure 12 presents meridional transport as a function of depth for the 175 km width of the
February 2000 section. The distinction between the solidly southward Deep Western
Boundary Current and the more variable upper-ocean transport is clearly seen. An arbitrary
vertical division at 1000 m depth results in a total transport of 2.1 Sv northward in the upper
ocean and 7.7 Sv southward between 1000-2000 m. The northward transport in the upper 200
m is most likely due to Ekman transport and is nearly balanced by equatorward flow at 200-
300 m depth. In this synoptic section there does appear to be a northward transport mode
associated with the AAIW salinity minimum. Lacking useful velocity data it is not possible
to characterize this northward flow as part of a mean circulation pattern or as an episodic
response to a passing NBC ring.
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Appendix A:

Temperature measurements.

Temperature time series plots are presented in this appendix. Figure Al shows a record-
length composite of filtered temperature data from all instruments. The x-axis is annotated
every 60 days, and each instrument is identified by its depth (located on the y-axis). This plot
is presented at a fixed scale in order to show the variability in signal between different depths.

The remaining figures each present an individual temperature record of both filtered (thick
line) and unfiltered (thin line) data. This illustrates the high-frequency inertial and tidal
signals present in the unfiltered data, which have been removed in the filtered, subsampled
data. The thin horizontal line indicates the record length mean of the final-quality, filtered
data. The x-axis is annotated every ten days, and each instrument’s y-axis has been scaled to

provide the greatest detail.

Bold vertical lines on all figures indicate the time that calibration CTD casts 2 and 3 were
performed. The earliest CTD cast occurs on the first day of the record and cannot be seen in

these figures.
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0472 m depth: Temperature (°C)
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0572 m depth: Temperature (°C)
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0672 m depth: Temperature (°C)
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0722 m depth: Temperature (°C)
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0772 m depth: Temperature (°C)
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0872 m depth: Temperature (°C)
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Appendix B:

Salinity measurements.

Salinity time series plots are presented in this appendix. Figure Bl shows a record-length
composite of filtered salinity data from all instruments. The x-axis is annotated every 60
days, and each instrument is identified by its depth (located on the y-axis). This plot is
presented at a fixed scale in order to show the variability in signal between different depths.

The remaining figures each present an individual salinity record of both filtered (thick line)
and unfiltered (thin line) data. This illustrates the high-frequency inertial and tidal signals
present in the unfiltered data, which have been removed in the filtered, subsampled data. The
thin horizontal line indicates the record length mean of the final-quality, filtered data. The x-
axis is annotated every ten days, and each instrument’s y-axis has been scaled to provide the

greatest detail.

Bold vertical lines on all figures indicate the time that calibration CTD casts 2 and 3 were
performed. The earliest CTD cast occurs on the first day of the record and cannot be seen m

these figures.
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0472 m depth: Salinity
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0672 m depth: Salinity
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0772 m depth: Salinity
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0872 m depth: Salinity
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1072 m depth: Salinity
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Appendix C:

0-S diagrams and drifter trajectories.

In this appendix we present 8-S diagrams and surface drifter trajectories corresponding to the
cold, fresh events discussed in Section 4. On the 8-S diagrams we show the evolution of
water properties at each instrument for each event. Changes in water properties during Events
1 and 4 appear to be largely isopycnal, suggesting advection of anomalous properties past the
mooring site rather than large vertical displacement of the instruments due to mooring tilt. In
contrast, Events 2 and 3 (which are associated with large mooring tilts) show large cross-
isopycnal changes in the 6-S relationship at each instrument. Using surface drifter trajectories
(shown) and SeaWiFS ocean color imagery (not shown), we can confirm that NBC rings were
in the immediate vicinity of the mooring during Events 3 and 4. Surface velocities recorded
by the drifters during their closest approach to the mooring were in the range of 40 - 100 cm/s.
No external information is available during Event 2. While there were drifters in the region
during Event 1, they do not clearly delineate the position of a ring.
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